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The Principle of Independence of the Cavity Sections Expansion
(Logvinovich's Principle) as the Basis for Investigation on Cavitation Flows

A. D. Vasin

State SRC TsAGI, Moscow, Russia
17, Radio str., Moscow, Russia

Summary
For the investigation of complex non-steady cavitation flows in three dimensions it is extremely
important to find a simple model which on one hand would correspond to the basic laws of a fluid stream
(the laws of conservation of energy and momentum) and on the other hand would be simple enough for
the numerical calculation. This model was presented by G. V. Logvinovich, and was called "The
Principle of Independence of the Cavity Sections Expansion". In the present lecture the deduction of the
principle of independence from the equation of conservation of energy is adduced. It is shown that for
the stationary cavities the results obtained on the basis of the principle of independence agree with the
results obtained on the basis of the slender body theory and the numerical methods as well as with the
experimental data. It is shown that for the special case - the cavitation number equals zero - the cavity
shape determined on the basis of the principle of independence agrees with the well-known Levinson-
Gurevich asymptotic. The application of the principle of independence for the calculation of some types
of the non-stationary cavities and cavities with variable external pressure (the vertical cavities in the
gravitational field) is considered.

Introduction

In the case of high-speed motion in water, cavities filled with gas or vapor are formed behind the body-
cavitator. The mathematical problem on the determination of the cavity shape is stated as the inverse
problem on the flow around a body - the free boundary shape is found from the constant pressure
condition. In case of the non-stationary cavities, the cavities with variable external pressure along their
length or the asymmetrical cavities, the problem on the determination of the cavity shape becomes
extremely complex. For the practical problems it is very important to have a simple method of
calculation of non-stationary cavitation flows that corresponds with the basic laws of a fluid stream.
Such a method was suggested by Logvinovich and was called "The Principle of Independence of the
Cavity Sections Expansion".

The principle of independence is stated as following. Each cross section of a cavity expands relatively to
the trajectory of the center of a cavitator which happens almost independently from the following or the
previous body motion. The expansion occurs according to the definite law which is dependent only upon
the difference between the pressure at infinity and the pressure within the cavity, the speed, the size, and
the drag of a body at the moment when a body passes the plane of the considered section [1]. The law of
expansion of the cavity fixed section can be determined using the principle of conservation of energy in
the wake. The thin cavity in ideal fluid can be considered as the wake. Each unit of the wake length
keeps the energy which was expended by the cavitator at the moment when it passes this unit of the
length of the trajectory [2,3]. This theory applied to the cavity with the constant difference of pressures
gives results which are very similar to the results observed in the experiments. Therefore, we can suggest
that this theory is also applicable for the case of variable difference of pressures.

Paper presented at the RTO A VT Lecture Series on "Supercavitating Flows " held at the von Kdrmdn
Institute (VKI) in Brussels, Belgium, 12-16 February 2001, and published in RTO EN-OIO.
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1. The Deduction of the Principle of Independence from the Equation of
Conservation of Energy

We designate the coordinate along the arc of the trajectory of the cavitator center as h (Fig. 1). This
coordinate is fixed relatively to the motionless fluid. At the point h let us draw the plane Z that is
perpendicular to the trajectory. We will observe the development of the cavity cross section arisen on
this plane at the moment t=-O.

Fig. 1 The scheme of development of the non-stationary cavity

Let us introduce the following designations: the radius of the cavity section R=R(h,t), the area of the
cavity section S(h,t)=7rR, the pressure within the cavity Pk=Pk(h,t), the pressure at infinity P-(h,t). We
can consider the pressure P-(h,t) to be the pressure at the point "0" of the intersection of the trajectory
with the plane Z when the cavity is absent or to be the hydrostatic pressure on the depth of the point '0'.

The cavitator passing the path Ah performs certain work and gives the energy WAh to the fluid (where W
is the drag force acting on the cavitator at the moment t-0). Proceeding from the physical scheme of the
flow we can accept that approximately the energy WAh is conserved in the considered section at the same
segment Ah in the form of the kinetic energy TAh n potential energy EAh up to the moment of this
section closure. Therefore, we can write an approximate equation for each cavity cross section

T(h,t)+ E(h,t)= w(h,o) (1.1)

Equation (1.1) can be applied to the whole cavity length and signifies that the energy that was imparted
by the cavitator at the point of the trajectory h is conserved on the cavity at this point. Proceeding from
the first Green's formula [4] we can express the kinetic energy that fits the unit of the cavity length by the
following equation

1 o
T = - Ipq 27cR a (1.2)

2 an
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where (p is the potential of the absolute velocity at the boundary, R and h ý a3o / an are the radius and

the radial velocity of cavity boundary at the point of the trajectory h, p is the fluid density.

The potential energy of a cavity section is determined as follows

E = A P (h, t )2;rR j dt (1.3)

where AP(h,t)=rP(h,t)-Pk(h,t). After substitution of (1.2) and (1.3) in (1.1) we obtain an

approximate equation of energy

2IjqJ + AP(h,t)Sdt = W(h,O) (1.4)

2 P(ý+f

where S = 27RR is the time derivative of the area of a cavity cross section.

The kinetic energy is determined along the stream tubes that lean on the expanding cavity hole in the
motionless plane. The trajectory of a cavitator intersects this plane along normal at the point h. The
dynamic boundary condition is written in a form of the general Bernoulli equation applied to the points of
space that coincide with the cavity boundary at the considered moment (later on we will be writing zIP
instead of AP(h, t))

a ( v2  AP

at 2 p

where v is the absolute velocity of the fluid particles on the cavity boundary. In the middle section of the

cavity v R/ is the small quantity and we neglect the value of v compared to the value of AP/fp. Then
equation (1.5) is written in the form

(1.6)
at p

Let us differentiate equation (1.4) with respect to t and using expression (1.6) we obtain

.AP .
S = S (1.7)

p
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From equation (1.6) the value of the potential on the cavity section boundary is determined as follows

t

=P + j= t (1.8)
o P

where (p, is the value of the potential at the edge of a cavitator at the moment of generation of the cavity
section (t=O). After substitution of (1.8) in (1.7) we obtain the following differential equation

, + f APdtI=APt (1.9)

Taking into account that d APdt = APdt, as a result of dividing variables and integrating we obtain

S=A p[ , + APdtl (1.10)

where A is the constant connected with the initial velocity of expansion of the cavity section by

dependence A = So / pqp,; So is the initial velocity of expansion. As a result equation (1.10) is

represented in the following form

[I+ 1 APd(1.11)

The value of the potential at the edge of a cavitator we can write as following: (p, =-aRV(O),
2

where a is some constant, R, is the radius of a cavitator, V(O) is the velocity of a cavitator at the moment
t=0. Since for the stationary cavity the flow is symmetrical the value of the potential on the mid-section
equals zero, consequently for the stationary cavity equation (1.8) can be written in the following form

"t'AP AP 1
( --=aRpV(O) (1.12)oP P 2
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where t1, is the time of expansion of a cavity section to the maximum size. In case of the stationary cavity
we can obtain the expression of the constant a from equation (1.12)

U'Lka = - (1.13)

2R,

2AP
where or is the cavitation number, V is the velocity of stationary motion of a cavitator,

pV
2

Lk = 2 Vtk is the cavity length. Let us determine the initial velocity of expansion So from the equation

of energy (1.4) at the moment t=0. Taking into account that W = C 7rR 2 , where C, is the drag2

coefficient of a cavitator we obtain

=27fCý,RV(0) S, 47fCý,
2o a k So a 2 (1.14)a (pn a2

As a result we go on from equations (1.11) and (1.14) to the well-known mathematical entry expressing
the principle of independence of the cavity sections expansion in the form of

kAP (1.15)

p

Equation (1.15) with the coefficient (1.14) (the constant a is slightly dependent on the cavitation number
and its value is selected from the range 1.5÷2) is widely applied for the investigation of non-stationary
cavities and cavities with variable external pressure along their length. The velocity of expansion of a
cavity section is determined from equation (1.11)

S=So -k -t (1.16)
op

Integrating equation (1.16) we obtain the dependence of the area of a cavity section on time

I t A

S=SO +Sot-k =---dtdt (1.17)

00 P



8-6

APwhere So is the initial area of a cavity cross section. In particular for the stationary cavity the value -
p

is constant and from (1.17), (1.14) and (1.13) we obtain the well-known result

Sk -SO t tk

where SkA is the maximum quantity of the area of a cavity cross section (the area of the mid-section).

If as the quantity So we choose the quantity of the area of the cross section on which the incline of a
cavity boundary is sufficiently small (slightly deviating from a disk-cavitator), then the calculations from
formula (1.18) agree very well with the experimental data as shown in Fig. 2 (in this figure the points
show the experimental data for the different cavitation numbers).

e~s- oo05g

0t

Fig. 2 The comparison of the stationary cavity profile obtained on the basis of the principle of
independence with the experimental data

Usually the profile of the stationary cavity past a disk is constructed as follows. In the vicinity of the disk
the cavity shape is not dependent on the cavitation number and can be expressed in the form [1]

RZ)=RI+3 (1.19)

where x is the coordinate measured along the axis of symmetry from the center of a disk. The cavity
shape determined from equation (1.18) joins with the shape expressed by the dependence R(x) (1.19).
We can consider the point with the coordinates: x=2R,, R(x)=1.92R, to be the point of contact.
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2. The comparison of the results obtained for stationary cavitation flows on the
basis of the principle of independence with the results obtained on the basis of the
slender body theory and the numerical methods

In this chapter we will demonstrate that the shape of the stationary cavity represented by
expression (1.18) can be obtained from the slender body theory. As an example we use the cavitation
flow past a thin cone. Let us consider a more general case - the supercavity past a thin cone in subsonic
compressible fluid flow. We apply the Riabouchinsky scheme (Fig. 3, the cavity is closed by a body with
the same dimensions as the caivtator).

Fig. 3 The Riabouchinsky scheme for the cavitation flow past a thin cone

The origin of the orthogonal system x, r is placed at the apex of the cone, the geometric dimensions are
scaled by the radius of the cone base (the radius of the cone base R, equals unity, I is the altitude of the
cone, (x is the apex half-angle, Lk is the cavity length, I+Lk and 21+Lk are the coordinates of the base and
the apex of the closing cone respectively, L=21+Lk is the total length).

Let us apply the linearized equation of the flow in the cylindrical coordinate system [5]

"0x2) + r--- ' =0 (2.1)

where D = D * / VoR, is the dimensionless flow velocity potential,

(D* is the flow velocity potential,

VO is the free stream velocity,

M= Vo/ao is the Mach number,

aG is the free stream speed of sound

We assume that the parameter of the cavity thinness has the same order as the parameter of the cone-
cavitator thinness. The parameter of thinness e equals the ratio of the cone radius to its altitude
(e=l/l=tga). Let us represent the potential D in the following way: P=-p+x, where (p is the
dimensionless perturbed velocity potential which is aimed at zero when x and r are aimed at infinity.
The dynamical boundary condition on the cavity surface is written as follows [6,7] (we neglect the
members that have the order of trifle exceeding El4n 2e)

2x + ) = (2.2)
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For the slender axisymmetrical bodies the perturbed velocity potential is defined by the method of

sources and sinks distributed along the axis of symmetry. For the subsonic flow the potential q( satisfying
the equation (2.1) has the form [5]

12 L q(x1 )dx (2.3)

47 0 xx) +(1M2)rl

where q(xi) is the intensity of sources and sinks on the axis of symmetry. Near the axis of symmetry the
perturbed velocity potential is represented by the following asymptotic equation [6,7]

q( =--IS'(x)ln r + g(x) (2.4)
27f

where S'(x) is the derivative of the dimensionless area of the slender body cross section with respect to x
coordinate.

The logarithmic potential is the main part of expression (2.4), and some function g(x) is added to it. The
function g(x) is determined from the condition of matching with the potential of the distributed sources
(2.3) since the logarithmic potential does not satisfy the condition at infinity. Also, the function g(x)
takes into account the influence of compressibility. After substitution g(x) we obtain the following
expression for the perturbed velocity potential near the surface of the body and the cavity [7]

( '= S'(x)ln (M2)r2 1 S'(x )-S'(X) (2.5)

4x(L- x) 4f go Ix-x, I

Substituting equation (2.5) in (2.2) we obtain the integro-differential equation for the cavity profile [8]

U 2_ ( m 2 )U I "XI "X

2u 4x(L - x) f x - xj -dx

- +'f u"(x,)-u•'(x) L u''(xi)- U(X)d = o(26

- f - I -2a (2.6)
1 I+L-L

u = R 2,u, =R2,uI(O)=0,u$(L)=0
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The cavity profile is determined by altering its radius along the coordinate x: R(x). Along the coordinate

x the radius R, of the cone-cavitator and the closing cone respectively change to R =av and Ri =e(L-x).
The following boundary conditions are added to the integro-differential equation (2.6)

x = 1: R = 1, R' = e

x=1+Lk:R=l,R'=-e

We seek the solution for the whole area of the cavity by expanding the asymptotic rows with the small

parameter E.

L' J' J (2.7)

=2[a(11-2+ +q, ln+a- +...

After substitution of the rows (2.7) into (2.6) and conservation of the two members of the rows the
integro-differential equation (2.6) is transformed to two differential equations. The first equation is
obtained from the equality of the members at l41n/E 2 , the second one follows from the equality of the
members at t4. The first differential equation with the boundary conditions is written as follows

d2 R2R
d 2 (2.8)

R2 (1)= 1 2 ,R (2 + Lk )= 2, dR = 21
0 0 dx

The solution of the equation (2.8) has the form

,•2 =l(a-xXx-b)

21 L -" IL -LL 2 IL (2.9)

L, 2 F42' 2 4 2

After reduction of equations (2.7) and (2.9) to the dimensional form and some transformations the first
approximation of the cavity shape is written as follows

R 2 2-x +xL--yI (2.10)
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If we transfer the origin of the coordinate system from the apex of the cone to its base then the cavity
profile takes the form of

R xR +xAk + Ik(2.11)

For the stationary cavity we can write the coordinate x and the length Lk as following:
x = Vot, Lk = 2 Votk, where t is the time. Substituting x and Lk in (2.11) and taking into account that

when t=tkA the equality R=Rk is satisfied, where Rk is the cavity mid-section radius, we obtain the
following equation

=-(2--1 (2.12)

Equation (2.12) corresponds with equation (1.18) if So = 7fR2. Thus, the principle of independence of

the cavity sections expansion and the slender body theory give the same result - we can consider an
ellipsoid of revolution to be the first approximation of the shape of the stationary cavity. Taking into
account that the first approximation is obtained for the compressible fluid we can draw a more general
conclusion - the principle of independence of the cavity sections expansion is satisfied in the subsonic
flow of the compressible fluid. For the case of the non-stationary cavities in the incompressible fluid the
conclusion of the principle of independence from the slender body theory has been performed in [9]
where the so-called "circular model" was applied.

Let us consider the results obtained for the stationary cavities by the numerical methods. We can divide
the numerical methods into three groups. The first group can be called 'the boundary integral equation
method'. In this method the stream function is applied and the surfaces of a cavity and a cavitator are
represented by the vortex layer. The cavitation flow is found with the help of the numerical solution of
the vortex layer integral equations [10,11,12]. The boundary element method based on the Green's
integral is related to the second group. In this method on the cavitator surface the sought function is the
perturbed velocity potential; on the cavity surface the sought function is the normal derivative of the
perturbed velocity potential [ 13,14]. The finite-difference method represents the third group [ 15,16].

The published works on the numerical calculations of the stationary cavitation flows contain the results
on the cavitation drag coefficient of a cavitator, the cavity mid-section radius and the cavity length. In
these works the difference in the results of the numerical calculations does not exceed several percent.
The numerical calculations have shown that the stationary cavity shape is close to an ellipsoid of
revolution for the cavitation numbers that have the order 102÷10-. This result agrees with the principle
of independence of the cavity sections expansion.

As an example, let us consider the results of the numerical calculations obtained by the author [16].
Using the finite-difference method the author has calculated the cavities past a disk in the subsonic flow
of the compressible fluid. The Riabouchinsky scheme was applied and the Mach numbers were located
on the range 0<•M/<0.95. The numerical calculation has shown that on the whole range of the Mach
numbers the cavity profile is close to an ellipsoid of revolution which is represented by the equation
(1.18). An ellipsoid joins with the cavity profile in the vicinity of the disk; as the point of contact we can
take the point with the coordinates: x=2R,, R=2 R,. Figure 4 illustrates the cavity profile in the vicinity
of the disk (the geometric dimensions are scaled by the radius of the disk R,).
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2

S2 3 x

Fig. 4 The front of the caivty

In Fig. 4 the continuous curve represents the result of the numerical calculation by the boundary integral
equation method for the incompressible fluid [10], the author's numerical results in the subsonic flow for
the different Mach numbers are shown by the points [16]. Figure 5 shows the cavity profiles in the
compressible fluid (M=0.8) and in the incompressible fluid (M=0) for the same cavitation number
03--0.0235 [16].

Fig. 5 Cavity profile

Both of the cavity profiles are close to an ellipsoid of revolution. The dimensions of an ellipsoid for
M=0.8 exceed the analogous dimensions for M=0 since the cavitation drag coefficient for M=0.8 exceeds
that for M=0.
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3. The application of the equation of conservation of energy for determining the
stationary cavity shape at a->O

The equation of conservation of energy on the given cavity section (1.1) is equivalent to the principle of
independence of the cavity sections expansion since all the three quantities that construct equation (1.1)
are independent from both the following and the previous cavitator motion. The sum of the kinetic and
potential energies on the section E (Fig. 1) is determined by the value of the cavitator drag W at the
moment when a cavitator passes the section E. The law of the cavity section expansion (1.15) obtained
from the energy equation (1.1) is independent from the following and the previous cavitator motion. This
law represents the principle of independence. It should be noted that the energy equation similar to
equation (1.1) was applied in [17] in order to estimate the axisymmetric cavity shape. However, in [17]
the kinetic energy in the wake was determined for the radial flow on the plane circular layer. In chapter 1
in contrast to [17] the kinetic energy (formula (1.2)) is determined along the stream tube leaning on the
expanding cavity hole.

The principle of independence is some approximation to the reality. However, a large number of
experiments have confirmed its accuracy for both the stationary and non-stationary cavities. The
principle of independence agrees with the results obtained from the slender body theory for the stationary
and non-stationary cavitation flows. Furthermore, the calculation results of the stationary cavities using
the numerical methods show that the cavity shape is close to an ellipsoid of revolution for the cavitation
number that have the order 102÷10-. Also, the ellipsoidal form of the stationary cavity has been
obtained from the principle of independence as we neglect the value of v 2/2 compared to the value of
AP/p in equation (1.5). Let us prove that the principle of independence of the cavity sections expansion
or the energy equation (1.1) are applicable for the special case. That is the cavitation number is equal to
zero (the infinite cavity length).

When the cavitation number equals to zero then AP = P - Pk = 0 and the potential energy in the wake

E (equation (1.1)) also equals zero. The kinetic energy in the wake is determined by formula (1.2). Let
us determine the quantities of the velocities on the cavity surface at the zero cavitation number (Fig. 6).

9

Fig. 6 The absolute velocity of the fluid particle on the cavity surface at G-0

The absolute velocity of the fluid particles on the cavity surface v is determined as the vector sum of the
transport velocity Vo directed along the x axis and the relative velocity directed along the tangent to the
cavity surface (for the zero cavitation number the relative velocity is equal to Vo). In Fig. 6 the section of
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the cavity surface is designated as s-s. From Fig. 6 we obtain the following correlations for the velocity
components.

a &
v = 2V0 sin- v =R=Vsina, v,= V= V sina2 Y an (3.1)
,, =vy =k, v--k

where a is the angle of inclination of the cavity surface to x axis. Correlations (3.1) are approximately
satisfied for the small cavitation numbers different from zero. They were used in chapter 1. For the zero
cavitation number the energy equation (1.1) we can write in the following form (taking into account
equation (1.2) and correlations (3.1))

- pvrkpR = W (3.2)

Let us substitute q( from equation (3.2) in the boundary condition (1.5). We assume that the approximate

equality v =/h is satisfied as a is a small quantity (correlations (3.1)). As a result we obtain the equation

-W-d1 )+ = 0 (3.3)
7rp dt 2RR 2

The first integral of the differential equation (3.3) has the form [1]

p(3.4)

where A is some constant.

For the stationary cavity the equality dx= Vdt is satisfied. Let us introduce the following designations:
x*=x/Rn, R*=R/Rn. Equation (3.4) is written as follows

dR * C 1
S(3.5)

dx* R* ]lnR*+A

Let us join the cavity profile (3.5) with the cavity profile in the vicinity of the disk (1.19). As the point of
contact we take the point with the coordinates x*=2, R*=1.92. At the point of contact we determine the
derivative dR*/dx* from equation (1.19) and substitute it in equation (3.5). As a result we determine the
constant A. According to the data presented in [1] the constant A equals 0.845. We obtain the cavity
profile from equation (3.5) in the form of

x* = 2 + --- lnu + Adu (3.6)
F *-V '



8-14

where u is the variable of integration. The asymptotic law of the axisymmetric cavity expansion has been
obtained for the zero cavitation number in [18,19]. This law can be presented as follows

R*-4 4C-- 4nx (3.7)
4flnx

In [20] the law of the cavity expansion was generalized for the case of subsonic compressible fluid flow.
In [20] it is shown that equation (3.7) has the same form for both incompressible and compressible fluid.
The compressibility exerts influence on the law of the cavity expansion by means of the drag coefficient
Cx, which is dependent upon the Mach number.

Let us compare the cavity profiles past a disk in incompressible fluid for the zero cavitation number
(Cx=0.82). We compare the profile obtained from the law of conservation of energy in the wake
(equation (3.6)) with the profile expressed by the asymptotic law (3.7). The results of this comparison
are shown in the table.

TABLE

x* R* eq. (3.7) R* eq. (3.6)

5 2.67 2.59

10 3.45 3.36

25 5.02 4.90

50 6.77 6.63

10 9.19 9.03

0

25 13.88 13.70

0

50 19.06 18.86

0

10 26.25 26.04

00

15 31.69 31.48

00
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It is evident from the table that the difference in the cavity profiles does not exceed several percent. We
can conclude here that for the zero cavitation number the results obtained based on the energy equation in
the wake (the principle of independence) agree with the well-known Levinson-Gurevich asymptotic (3.7).

In chapters 1 and 3 we have determined the cavitation profiles based on the energy equation (the
principle of independence) and have applied the dynamical boundary condition (1.5) for two cases:

1. when we can neglect the value of v2/2 compared to the value of AP/p in the middle section of the
cavity

2. when the value APequals zero (the zero cavitation number).

In the first case the cavity shape agrees with the experimental data and the theoretical results for the
cavitation numbers that have the order 10 -210. In the second case the cavity shape agrees with the
Levinson-Gurevich asymptotic at 0-=0. Thus, we do not investigate the cavities on the range 0<o"<0.005.
Let us extend the application of the principle of independence to this range of the cavitation numbers.

Recently G. V. Logvinovich has considered the general case - two members v2/2 and AP/p are taken into
account in the dynamical boundary condition (1.5) [21]. Let us determine the stationary cavity shape for
this case. The potential energy is defined as E=icR 2AP and equation (1.4) is written in the following
form

- prp•kR +rR 2 Ap= W (3.8)

After substitution of q( from equation (3.8) into the dynamical boundary condition (1.5) using the

approximate equality v R/h we obtain the following equation

W d 1 _I +APd(R) =AP R 2

(3.9)7rp dt .RR? p dt h.? p 2

As a result of the transformations the first integral of differential equation (3.9) for the stationary cavity
can be written as follows [21]

dR* C~ 1 1_GR* 2 IC~

dA* 2L R* l nR*+A (3.10)

At o"=O differential equation (3.10) is transformed to equation (3.5). Using equation (3.10) the cavity
profiles were calculated for the wide range of cavitation numbers [21]. For the cavitation numbers that
have the order 10-2 the calculations on the basis of equation (3.10) have shown that the cavity shape is
close to an ellipsoid of revolution. This result agrees with the well-known experimental and theoretical
results.

Thus, on the basis of the carried out investigations we can conclude that the principle of independence of
the cavity sections expansion deduced from the equation of conservation of energy in the wake is

applicable to the wide range of the cavitation numbers 0<•"<0.1. On this range the stationary cavity
profiles can be calculated by the single formula (3.10).
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4. The calculations of the cavities in the gravitational field on the basis of the
principle of independence of the cavity sections expansion

The principle of independence of the cavity sections expansion makes the calculation of the cavity profile
easier in the arbitrary variable pressure fields. Based on this principle the cavity shape is determined if
we know the law of the cavitator motion and the values of the pressure at infinity and within the cavity.
Let us apply the principle of independence for the calculation of the vertical cavities in the gravitational
field [22].

Let us consider the vertical axisymmetrical cavity formed by the stream around the motionless disk-
cavitator in the gravitational field. The stream can be descending or ascending, the value of the stream
velocity V is the constant (Fig. 7).

VV

Fig. 7 The coordinate systems for the calculation of the cavity profile in the gravitational field

At the level of the cavitator the free stream pressure P, (the pressure at infinity) is the constant. Let us
introduce the vertical coordinate axis x directed along the stream velocity and the symmetry axis of the
cavity from the cavitator center. On the section with coordinate x the free stream pressure (the pressure
at infinity) is expressed as following

P (x)= PW , ± pgx (4.1)

where g is the gravitational acceleration, the sign 'plus' corresponds with the descending stream, the sign
'minus' corresponds to the ascending stream.

We determine the profile of the stationary vertical cavity. For the stationary cavity the pressure within it
is the constant - P,=const. The area of the cavity cross section fixed relatively the motionless fluid
changes according to equation (1.15). Integral of equation (1.15) is equation (1.17) which describes the
change of the area of the cavity fixed cross section. In this example we consider the cavitator to be
motionless and observe the cavity section which has been formed at the edge of the cavitator at the
moment t=O and moves at the velocity V along with the stream. The area change of this section can be
represented by the following expression

S(t)= SO + Sot-k f duf AP(v)dv (4.2)
p 0 0



8-17

where v and u are the variables of integration, So is the section initial area equal to the cavitator area. Let
us substitute the expression of the external pressure (4.1) in dependence (4.2). Note that in (4.1) x is
written as x(v)= Vv. After integration of equation (4.2) we obtain

S(t)= so + S 0 t - 2AP 0 ± -pgVt (4.3)
2p ( 3

Expression (4.3) contains the difference AP 0 of the pressure at infinity and the pressure within the cavity
APO = P, - Pk . This difference is related to the section at the level of the cavitator.

Let us consider the case of the descending stream. For the stationary cavity the variable x is written as
x=Vt. After substitution of (1.14) into (4.3) and certain transformations we obtain the expression for the
vertical cavity profile in the dimensionless form

a*2 =I+ ax *2 ° + (4.4)
a a 2 3Fr2 ,

where R *, x* are the dimensionless cavity radius and coordinate x scaled by the disk radius Rn,

Oo = 2APo / pV 2 is the cavitation number at the level of the cavitator,

Fr = V / F2 g is the Froude number.

2 /

Fig. 8 The vertical cavity profiles in the descending stream
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As an example, in Fig. 8 the cavity profiles calculated by formula (4.4) are represented by the continuous

curves for the three values of the cavitation number or: -0.1; 0; 0.1. The Froude number equals 3.2 and
it remains the same for all the three cavities, the constant a equals 1.5. The Levinson-Gurevich

asymptotic (3.7) for the zero cavitation number and weightless fluid (Fr=-) is represented by the broken
curve.

Let us determine the length Lk. of the stationary vertical cavity for the Riabouchinsky scheme (Fig. 7).
We assume that the cavity is closed by the disk of the same dimensions as the disk cavitator, i.e. R*=I at
x*=LIr/R,. From expression (4.4) we obtain the quadratic equation for determining the cavity length

[Lk 2 1 +( Lk )'o-r + 2 2=0 (4.5)

R, 3aFr 2 R, a-f-

The solution of equation (4.5) can be represented in the following form

Lk 3 9 2F2 + 3 a (4.6)

2RFr 4 Oo r + o'2Fr 2

In Fig. 9 dependence (4.6) is represented by the continuous curve, the points show the experimental data
obtained for different values of the Froude and the cavitation numbers [22]. Figure 9 shows good
agreement between the theoretical dependence (4.6) and the experimental data.

La r

444

L3 -3
A " r

Fig. 9 The comparison of the calculation of the vertical cavity length based on formula (4.6)
with the experimental data

Let us apply the principle of independence for the investigation of the cavity deep closure which occurs
at the water entry of bodies [23]. At the moment of intersection of the water surface the cavity is formed
past a body. This cavity communicates with the atmosphere, consequently in the initial period of
submersion the gas pressure within the cavity is close to atmospheric pressure and the cavitation number
is close to zero. However, as the body sinks the external hydrostatic pressure increases and under the
influence of the excess pressure the cavity section closes. The cavity detaches from the atmosphere and
the so-called deep closure occurs (Fig. 10).
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Fig. 10 The cavity deep closure at the water entry of a cavitator

Let us consider the inclined rectilinear water entry of the cavitator at the constant velocity V. We

designate the entry angle as 0 (the angle of inclination of the trajectory to the free surface). The time t is
measured from the instant of the cavitator's initial contact with the water surface. We observe the section
which has been formed at the moment t, on the depth H1 (Fig. 11).

Fig. 11 The scheme for the calculation of the deep closure

We consider the pressure within the cavity equal to the atmospheric pressure then the excess pressure on
the considered section is the constant and can be written in the form of

AP = pgH, = pgL1 sin 0 (4.7)
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The equation of the cavity section expansion is described by equation (1.15). The integral of equation
(1.15) is written as follows

kAP ( )2
S(H,,t)=So + So(t-t,)--kP t- -t, (4.8)

2p

where So is the cross section initial area equal to the cavitator area. From equations (4.7) and (4.8) we
can determine the cavity profile at the water entry of the disk-cavitator if we apply the obvious
correlations - x = V(t - t, ); L1 = L - x where x is the coordinate measured from the cavitator center

along the trajectory of the cavitator, L is the cavitator path passed after the intersection of the water
surface.

S(x)= So + so x-kgLsinO x2 + kgsinO0 x3 (4.9)

V 2V 2  2V 2

We determine the cavity length from the condition that the cavity is closed by the disk with the same
dimensions as the disk-cavitator. From (4.9) we obtain the quadratic equation for determining the cavity
length

kgsin 0 kgL sin 0 s

2V 2  
k 2V 2  V

The solution of equation (4.10) is written in the form of

L L _ g8SsV
Lk 1 0 (4.11)2 2• kgL2 sinO0

It is obvious that the maximum cavity length corresponds to the deep closure. It follows from (4.11) that
the value of Lk is maximum when the radicand expression equals zero. Then the value of Lk equals L/2,
i.e. the cavity closes halfway passed by the cavitator. The moment of the deep closure is determined
from the equation

8SV =1 (4.12)

kgL
2 sin 0

After substitution of correlations (1.14) and the equality L=Vtd in (4.12), for the dimensionless deep
closure time we obtain the expression

t= 2Fr1 2a (4.13)
sin 0
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where td = Vtd / R, is the dimensionless deep closure time, td is the deep closure time.

Previously expression (4.13) was obtained in a different way in [24]. The path passed by the cavitator at

the moment of the deep closure is determined from the equality L = Rtd.

5. The application of the principle of independence for the calculation of the non-
stationary cavities with variable internal pressure

The area of the cavity cross section fixed relatively to the motionless fluid changes according to equation
(1.15). Equation (1.15) expresses the principle of independence. The integral of equation (1.15) is
equation (1.17) that describes the area change of the cavity fixed cross section. Let us go on from
equation (1.17) to the expression that represents the cavity profile at the fixed time [25]. In order to do
that in equation (1.17) we introduce the time t which is common for all the sections. At the moment t the
cavitator has the coordinate H. Let us designate the moment of the section formation with the coordinate
h as t1 (t, =t1 (h) <t=t1 (H)). Then equation (1.17) transforms to

k U
s(h,t)= So + s0(t- t, )- -jduAP(h,v)dv (5.1)

P t tI

where So is the cavitator area, S0 is the constant that defines the initial velocity of the cavity expansion,

v and u are the variables of integration. At the fixed moment t equation (5.1) expresses the cavity profile
S(h). At the fixed moment ti, i.e. h=const, equation (5.1) describes the expansion of the fixed cavity
cross section. We can transform the double integral in (5.1) to the line one as follows. Let us change the
order of integration in the double integral

fdu AP(h,v)dv = fAP(h,v)dvfdA = f(-v)AP(h,v)dv (5.2)
tE j I1 V 11

After substitution of (5.2) in (5.1) we obtain

S(h,t)= So + So(t- t, )- -- ( - v)AP (h,v)dv (5.3)
P t'

Equation (5.3) is especially convenient for the numerical calculation of the cavity profile when the
pressure within it changes arbitrarily. As an example we consider the calculation of the cavity profile
when the gas pressure within it changes according to the harmonic oscillations [26]. The time
dependence of the gas pressure is written as follows

P, (t)= Pk, + A sin (ot (5.4)
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where Pk, is some constant pressure, (o is the circular frequency, A is the amplitude of oscillations. We

consider the external pressure P-(h,t) to be a constant and equal to P-. After substitution of (5.4) in
(5.3) or (5.1) we obtain the profile of the pulsating cavity

S(x, t) S, s± - kAx- 0 x2 -_k F I WX sin[wt+g,(x)] (5.5)
V 2pV2  p(O V

where x = V(t - t,) is the coordinate measured from the cavitator along the stream velocity,

AP0 = PI - Pk0 is the stationary excess pressure

F2 -j= 2 1-Cos °X )+ xo(s X-2sinf V •Nj (5.6)

The first three members in (5.5) express the profile of the stationary cavity, the last member describes the
perturbation of the cavity profile. The amplitude of the perturbation of the cavity profile increases to the
downstream end of the cavity. The increase of the perturbations to the downstream end of the cavity is
illustrated by Fig. 12 which shows the dependence (5.6).

FIG. 12 THE INCREASE OF THE PERTURBATIONS TO THE DOWNSTREAM END OF THE CAVITY

Also, the increase of the perturbations to the downstream end of the cavity is confirmed by the
experiments performed with the pulsating cavities [26].

If beforehand the gas pressure within the cavity is not known then it is necessary to add the subsidiary
equations to equation (5.3) or (1.15). The equation for calculating the gas volume within the cavity is
one of them

Qot)= f 1s(h10- s,,(hlt)]dh (5.7)
H (t)

where Q(t) is the volume contained between the cavity boundary and the body within the cavity,

Sb (h,t) is the area of the body cross section;

H(t) is the coordinate of the cavitator,

h, (t) is the coordinate of the cavity closure.
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The equation of the gas mass change within the cavity has the form of

din(O_) _h S (5.8)
dt

m(t) is the gas mass within the cavity;

ts is the mass gas-supply rate to the cavity;

th, is the mass-leakage rate from the cavity.

The following is the equation of the gas state within the cavity

Pk(t) Q(t) R(t) (5.9)
m(t)

where R is the gas constant,

T(t) is the gas temperature within the cavity. This temperature is dependent upon the thermodynamic
process. In most cases we can consider the thermodynamic processes within the cavity to be isothermal
and assume that the gas temperature within the cavity is equal to the temperature of the surrounding fluid.

In general the equation of the cavitator motion appears like

dV = F(V,H,Pk ,h,) (5.10)
dit

where V is the velocity vector.

The system of the equations (5.3), (5.7)-(5.10) describes the dynamics of the non-stationary cavity in the
closed form. In fact, we can solve this system by the numerical method at each time step substituting the
cavity profile for the discrete set of the cross sections. Also, in this case using the numerical method we
can solve equation (1.15) instead of equation (5.3).

E. V. Parishev [25] has transformed the integral correlations (5.3) and (5.7) in the nonlinear differential
equations with the lagging argument. It turned out that in general the dynamics of the non-stationary
cavity is described by the system of the nonlinear differential equations of the sixth order with the
variable lag (excluding the equations of the cavitator motion). In particular cases these equations are
simplified. For example, in case of the axisymmetric cavity formed past a cavitator which is moving at
the constant velocity in the weightless fluid and with the assumption that the gas mass within the cavity is
the constant (gas-supply and gas-leakage are absent), the equation for the small pressure oscillations of
the gas within the cavity has the form [27]

S(,*)+ + (,J • ,-2 k(t *) +-2 ok(
Pk" (t)P( ) k *)++Pkk(5.11)

T *T*
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where Pk is the gas pressure within the cavity (small oscillations relatively to the equilibrium), t*=t/T- is
the dimensionless time, z*--T/T is the dimensionless lag, T=Lk/V is the dimensional lag, Lk is the cavity
length at the equilibrium, V is the cavitator velocity. The time scale T is determined by the expression

FnQP (5.12)

where Qo is the cavity volume at the equilibrium, Pk is the gas pressure within the cavity at the

equilibrium, 1/n is the polytropic index of the thermodynamic process within the cavity, for the
isothermal process n equals 1.

Equation (5.11) has the single basic parameter equal to the dimensionless lag T*. As a result of
transforming equation (5.12) this parameter can be represented as following

T* 2 Eu _ 1)

where Eu = 2fI / pV 2 is the Euler number, a is the average cavitation number defined by the pressure

Pk0.

Thus, all the cavity properties described by equation (5.11) are defined by the value of the ratio Eu/u.
Also the experimental works [28,29] show that the phenomenon of the artificially inflated cavity
pulsation is defined by the ratio u/Eu. Equation (5.11) has both the steady and unsteady (pulsating)
solutions. For the vapor cavities (uýEu) and the ones close to them the solutions are steady. However,

when 'r* > ,,r2 the solutions are unsteady. This result corresponds to the well-known features of the
vapor cavity which does not pulsate. Also, the experiments in [28,29] show that the cavities with a weak
gas-supply, i.e. those that are close to the vapor ones, are steady.

S

Fig. 13 The dependence of the dimensionless circular frequency of cavity
pulsation w* on the parameter T*

In Fig. 13 the dependence of the dimensionless circular frequency of the cavity pulsation w* (t(o*=wLk/z*
V, where (o is the dimensional circular frequency) on z* is represented by the discontinuous serrate
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function with the average value equal to 1. Knowing the dimensionless frequency of pulsation we can
determine the number of the waves N going into the cavity length

N = L 0 _* r *

A 27f

where ,A is the wave length. Since the dependence o*(z*) is discontinuous the dependence N(T*) is
discontinuous too and the number of the waves going into the cavity length is close to integer. At the
continuous change of r* the value of N changes as the stepped function. The dependence N(r*) is
represented in Fig. 14. The points show the experimental data [26].

2-

0 iO 3O 409 60C
Fig. 14 The dependence of the number of the waves going into the cavity length Non the

parameter r*

The discontinuous properties of the dependences o*(z*) and N(r*) agree with the well-known
experimental data [29]. The experiments have shown [29] that the pulsating cavities have the regimes
with the fixed number of waves close to integer. The experiments have also shown [29] that at the
smooth value change of the gas-supply the number of waves changes as the stepped function.

Thus, the cavity instability is connected with the gas elasticity within it. The underwater bubble has the
analogous instability when it is internally supplied by gas. We can consider the cavity to be a dynamic
system with infinite degrees of freedom. The cavity cross section changes influenced by the difference
between the free stream pressure and the pressure within the cavity; the cavity volume changes as well.
The cavity volume change leads to the pressure change within the cavity, etc. The cavity being a
dynamic system with these properties is analogous to the vibration of a body on a spring. The coordinate
of a body is analogous to the cavity cross section area. The elastic force of a spring is analogous to the
pressure within the cavity. However, in case of a cavity we have an infinite quantity of these bodies
(sections) and the pressures within the cavity is a function of the whole cavity volume, i.e. the cross
sections are connected by means of the gas that fills the cavity. The gas-leakage from the cavity is the
factor of stability. When this factor is active the parameter r* that corresponds to the cavity stability,

exceeds the value of 7rF 2 . In addition to the mathematical model Parishev removed the gas along the
bound vortexes and obtained the accordance with Epshtein's experimental data [26].
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Conclusions

The principle of independence of the cavity sections expansion stated by G. V. Logvinovich provides an
easier way for investigating the non-stationary cavities and the cavities with the variable external
pressure. This principle corresponds to the flow's property around slender bodies and it is stated as
following - each cavity cross section expands relatively to the trajectory of the cavitator center according
to the certain law which is dependent on the conditions at the moment as a cavitator passes the plane of
the considered section. The cross section expands almost independently from the following or the
previous cavitator motion.

The principle of independence is equivalent to the equation of conservation of energy applied to the given
cavity section. The sum of the kinetic and potential energies on the cavity section is determined only by
the value of the cavitation drag at the moment of intersection with this section. The law of the cavity
section expansion (1.15) obtained from the energy equation (1.1) is independent from the following and
the previous cavitation motion.

The principle of independence is some approximation to the reality. However, the numerous experiments
have confirmed it being accurate for both the stationary and non-stationary cavities. The principle of
independence agrees with the results obtained from the slender body theory for the stationary and non-
stationary cavitation flows.

Furthermore, the results of the stationary cavity calculation by the numerical methods demonstrate that
the cavity shape is close to an ellipsoid of revolution for the cavitation numbers that have the order
102÷10-1. The ellipsoidal form of the stationary cavity has also been obtained from the principle of
independence. The principle of independence of the cavity section expansion and the energy equation are
applicable for a special case - the cavitation number equals zero (the infinite cavity length).
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